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Superconvergent perturbation theory for an anharmonic
oscillator
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A computationally facile superconvergent perturbation theory for the energies and wave-
functions of the bound states of one-dimensional anharmonic oscillators is suggested. The
proposed approach uses a Kolmogorov repartitioning of the Hamiltonian with perturbative
order. The unperturbed and perturbed parts of the Hamiltonian are defined in terms of projec-
tions in Hilbert space, which allows for zero-order wavefunctions that are linear combinations
of basis functions. The method is demonstrated on quartic anharmonic oscillators using a
basis of generalized coherent states and, in contrast to usual perturbation theories, converges
absolutely. Moreover, the method is shown to converge for excited states, and it is shown that
the rate of convergence does not deteriorate appreciably with excitation.

KEY WORDS: perturbation theory, time-independent Schrödinger equation, quantum me-
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1. Introduction

The energies and wavefunctions of bound states of quartic anharmonic oscillators,
i.e., systems with Hamiltonians

H = 1

2
p2 + 1

2
x2 + gx4, (1)

continue to be actively studied as a result of their occurrence in important but disparate
areas such as quantum field theory and the study of molecular vibrations (see, e.g., [1,2]).
Specifically, the known divergence of Rayleigh–Schrödinger (RS) perturbation theory
for the quartic anharmonic oscillator [3,4] is assumed to be a good model of divergences
in quantum field theory [5]. Attention has focused on resummation techniques of the
series [2,6 and references therein]. However, Patnaik [7] has demonstrated that with an
alternative choice of basis an initially stronger convergent RS perturbation theory can be
obtained, and Znojil [8] proposed a modified RS treatment that obtains convergent series

∗ Corresponding author.∗∗ Current address: Department of Chemistry and Biochemistry, University of Mississippi, University, MS
38677, USA.

105

0259-9791/02/0100-0105/0  2002 Plenum Publishing Corporation



106 G.S. Tschumper, M.R. Hoffmann / Superconvergent perturbation theory

for sufficiently small perturbations. In this paper, we propose a superconvergent pertur-
bation theory and demonstrate numerically its convergence behavior for the quantum
quartic anharmonic oscillator.

Following the pioneering work of Kolmogorov [9], superconvergent perturbation
methods have become widely used in the study of classical dynamics (see, e.g., [10]).
Superconvergent perturbation theories are based on the notion of absorbing all solvable
parts into the unperturbed Hamiltonian in each order of the perturbation theory,

H = H
(n)

0 + V (n). (2)

Whereas an elegant statement of the idea of Kolmogorov can be made in terms of Lie
methods, through the Deprit power series expansions (see, e.g., [10]), Berry [11] demon-
strated that superconvergent perturbation theories can be expressed equivalently in the
intuitively appealing framework of local quadratic approximations and function mini-
mizations. The presentation herein uses the Berry framework.

Despite the widespread use of superconvergent perturbation theories in classical
dynamics, such approaches are apparently unreported for bound state quantum prob-
lems. Consequently, in the following section, we present a superconvergent perturbation
theory for the energies and wavefunctions of the time-independent Schrödinger equa-
tion. Our proposed superconvergent perturbation theory could, in principle, be used in
conjunction with any reasonable basis set. For example, the discrete variable represen-
tation (DVR), which has been shown to give substantial numerical improvements over
continuous basis representations in variational calculations of molecular vibrations [12
and references therein], may be expected to be useful in the present approach as well.
In this paper, in order to focus attention on the perturbation theory, only one specific
continuous basis representation (i.e., the generalized coherent state basis) is used. In
section 3, after briefly reviewing the generalized coherent state basis set for quartic os-
cillators, introduced by Hsue and Chern [13] and used in Patnaik’s RS treatment [7], we
provide numerical results of application of our proposed superconvergent perturbation
theory for the quantum mechanical quartic anharmonic oscillator. It is shown that, while
the generalized coherent state basis functions prove to be adequate zero-order functions
for ground and low-lying states, they are unreliable for more highly excited states. We
introduce a straightforward method for generating zero-order functions for such more
highly excited states. The conclusions are given in a final section.

2. Superconvergent perturbation theory

2.1. Basic equations

As mentioned in the introduction, the basic idea of all superconvergent perturbation
theories is to redefine the partitioning of the Hamiltonian with order, so as to effect as
small of a perturbation as possible. Although there are similarities between Kolmogorov-
type superconvergent methods and methods of averaging, the latter can lead to conver-
gence to erroneous results and are not pursued further in the present work [10,14]. Un-
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fortunately, each step in Kolmogorov’s technique is much more complicated than the
corresponding steps in ordinary perturbation theory, which has hindered practical ap-
plication. This observation is particularly relevant vis-à-vis computational perturbation
theory. However, Berry observed that a repeated application of a Newton minimizer [11]
(also see Moser [15]) produces a series analogous to Kolmogorov’s; specifically, the
order of convergence is the same. Hence, we develop our perturbation theory in the
framework of Berry’s function minimization.

The action of the nth order perturbation operator on the nth order approximation
to the wavefunction is

V (n)
∣∣ψ(n)

k

〉 = H
∣∣ψ(n)

k

〉− E
(n)
k

∣∣ψ(n)
k

〉
, (3)

where E
(n)
k is the nth order estimate of the energy, and in accord with Kolmogorov,

H
(n)
0

∣∣ψ(n)
k

〉 = E
(n)
k

∣∣ψ(n)
k

〉
. (4)

In all of the equations presented subsequently, a subscript designating the particular state
of interest is understood and suppressed. We demonstrate numerically in section 3 that
the proposed method is capable of describing excited as well as ground states.

Rather than expanding the wavefunction and energy in the conventional order-by-
order manner of perturbation theory, consider the first-order variation of the residual
vector:

r
(n)
j ≡

〈
φ
(n)
j

∣∣V (n)
∣∣ψ(n)

〉
, (5)

where |φ(n)
j 〉 is a function in an orthonormal basis set. Since the exact wavefunction

must be a vector of the relevant Hilbert space, and, under the mild restriction that all
approximations thereof are as well, the residual vectors are Fréchet differentiable so that
a Taylor series exists (see, e.g., [16]), i.e.,

r
(n+1)
j = r

(n)
j +

∑
k

G
(n)
jk s

(n)
k + · · · , (6)

where the elements of the Jacobian matrix are

G
(n)
jk ≡

∂r
(n)
j

∂c
(n)
k

= 〈
φ
(n)
j

∣∣H ∣∣φ(n)
k

〉− c
(n)
j

∂E(n)

∂c
(n)
k

− E(n)δjk, (7)

s(n) is a search direction (alternatively referred to as a descent direction or step direction),∣∣ξ (n)〉 =∑
i

s
(n)
i

∣∣φ(n)
i

〉
, (8)

and c(n) is the representation of the current wavefunction in the current basis. The energy
gradient is given by

∂E(n)

∂c
(n)
k

= 2

〈ψ(n)|ψ(n)〉
∑
i

c
(n)
i

[〈
φ
(n)
i

∣∣H ∣∣φ(n)
k

〉− E(n)δik
]
, (9)
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and δij is used to designate the Kronecker delta function (δij = 1, i = j ; 0, otherwise).
Then, in the spirit of Berry, we suggest that a superconvergent perturbation theory for
eigenvalues and eigenvectors be developed by requiring that r(n+1)

j , from the truncated
form of equation (6), be minimized. Specifically, the nth order correction to the wave-
function (cf. equation (8)) is determined from the solution of the set of simultaneous
linear equations,

G(n)s(n) = −r (n). (10)

Equations (10) are, in general, infinite dimensional and not solvable in closed form.
Moreover, as an eigenvector is determined only up to normalization, the issue of nec-
essary and sufficient number of equations must be considered. In order to obtain a per-
turbative approximation, we examine the partitioning of the Hamiltonian in closer detail
than needed above. Block-diagonal unperturbed Hamiltonians have been shown previ-
ously to be effective in developing Hilbert space perturbation theories [17,18], and we
adopt this approach. Here, let

H
(n)
0 = P (n)HP (n) +Q

(n)
1 HQ

(n)
1 +Q

(n)
2 HQ

(n)
2 , (11a)

and so,

V (n) = P (n)HQ
(n)
1 +Q

(n)
1 HP (n) +Q

(n)
1 HQ

(n)
2 +Q

(n)
2 HQ

(n)
1 , (11b)

where P (n) is the projector of the nth order wavefunction, i.e., P (n) = |ψ(n)〉〈ψ(n)|,
Q

(n)
1 is the projector of the space connected to |ψ(n)〉 by the Hamiltonian, but excluding
|ψ(n)〉 itself, and Q

(n)
2 is the (infinite dimensional) remainder. Clearly, Q(n)

2 HP (n) and
P (n)HQ

(n)

2 vanish and so these terms do not appear in either equation (11a) or (11b).
With this partitioning, the given equations are valid as written, except that the Hamil-
tonian contribution to the Jacobian (cf. equation (7)) is replaced〈

φ
(n)
j

∣∣H ∣∣φ(n)
k

〉 
⇒ 〈
φ
(n)
j

∣∣Q(n)

1 HQ
(n)

1 +Q
(n)

2 HQ
(n)

2

∣∣φ(n)
k

〉
. (12)

Consequently, equations (10) decouple into Q
(n)
1 and Q

(n)
2 , and the summations in equa-

tions (6) and (8) become restricted to functions in Q
(n)
1 .

2.2. Update

One essential detail remains in specifying the suggested superconvergent perturba-
tion theory. Recognizing the similarity between the suggested method, for solution of an
eigenvalue/eigenvector problem, and the Gauss–Newton method for the nonlinear least
squares problem (see, e.g., [19]), we should expect it necessary to distinguish small-
residual and large-residual problems. As Gauss–Newton is superlinearly convergent in
the small residual case (and superquadratically convergent for zero residual) [19], we
should expect that an update of the form

c(n+1) = c(n) + s(n)
1+ [s(n)]T[s(n)] (13)
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will prove satisfactory for small-residual cases. We shall present numerical evidence
in the following section to this effect. On the other hand, Gauss–Newton is not neces-
sarily locally convergent for sufficiently large residuals (or highly nonlinear problems).
One alternative, which is locally convergent on almost all problems, is to use a line
search in connection with a Gauss–Newton search direction; i.e., the so-called damped
Gauss–Newton method [19]. In the context of our suggested superconvergent perturba-
tion theory, the update becomes the solution of the one-dimensional subproblem,

min
α∈[0,1]

∥∥R(α)∥∥ = ‖H |ψ(α)〉 − E(α)|ψ(α)〉‖
〈ψ(α)|ψ(α)〉1/2

, (14)

where ∣∣ψ(α)
〉= ∣∣ψ(n)

〉+ α
∣∣ξ (n)〉, (15a)∣∣ψ(α)

〉=∑
i

c
(n)
i

∣∣φ(n)
i

〉+ α
∑
i

s
(n)
i

∣∣φ(n)
i

〉
. (15b)

Equivalently, we can solve the subproblem,

min
α∈[0,1]

∥∥R(α)∥∥2 = ‖H |ψ(α)〉 − E(α)|ψ(α)〉‖2

〈ψ(α)|ψ(α)〉 . (16)

Explicitly,

∥∥R(α)∥∥2 = (〈ψ(α)|H − 〈ψ(α)|E(α))(H |ψ(α)〉 − E(α)|ψ(α)〉)
〈ψ(α)|ψ(α)〉 , (17a)

which simplifies to

∥∥R(α)∥∥2 = 〈ψ(α)|H 2|ψ(α)〉
〈ψ(α)|ψ(α)〉 −

(
E(α)

)2
, (17b)

and

∥∥R(α)∥∥2=
∑

i (σ
(n)
i + ακ

(n)
i )2

1+∑
i(s

(n)
i )2

−
[
E(n) + α

∑
i(c

(n)
i κ

(n)
i + s

(n)
i σ

(n)
i )+ α2 ∑

i s
(n)
i κ

(n)
i

1+∑
i(s

(n)
i )2

]2

. (17c)

In equations (17), the following definitions were introduced:

σ
(n)
i =

〈
φ
(n)
i

∣∣H ∣∣ψ(n)
〉 =∑

j

c
(n)
j

〈
φ
(n)
i

∣∣H ∣∣φ(n)
j

〉
(18)

and

κ
(n)
i =

〈
φ
(n)
i

∣∣H ∣∣ξ (n)〉 =∑
j

s
(n)
j

〈
φ
(n)
i

∣∣H ∣∣φ(n)
j

〉
. (19)
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In order to understand the essence of the residual minimization more fully, it is pro-
ductive to consider the dimensionality of the nth order vectors, or, more precisely, their
inner products. The energy term, i.e., the second term in equation (17c), involves only
summations over Q(n)

1 . Specifically, c(n) is completely within Q
(n)

1 ⊕P (n) and s(n) is com-
pletely within Q

(n)

1 . However, as κ (n) is not within Q
(n)

1 , the first term in equation (17c)
must be performed in Q

(n)
1 and a small part of Q(n)

2 . Heuristically, the minimization of
residual we propose as a final step of our suggested superconvergent perturbation theory
provides a best fit for the current order balanced against the introduction of large error
in the subsequent order.

With regard to the observation of the last paragraph, we address two details. First,
as s(n) ∈ Q

(n)

1 and determination of the step direction did not explicitly consider P (n), it
can be seen that the minimization of residual not only considers the effect of Q(n)

2 but also
introduces explicit consideration of P (n) into the calculation. As the small residual case
results in small changes in P from iteration to iteration, it should not be surprising that
update (13) suffices in this case. Secondly, as the step α|ξ (n)〉 is based on the topology
near the unperturbed vector, we search for the first minimum between 0 and 1, ascending,
during the line search, and, if such minimum does not exist, accept α = 1. Although
a conservative line search may slow convergence, it also enhances the integrity of the
approximation of the eigenvector from order to order. In particular, we should expect at
least some resistance to the so-called root-flipping problem.

3. Results

3.1. Quartic anharmonic oscillator

In terms of the standard creation and annihilation operators, a+ = (x − ip)/
√

2
and a = (x + ip)/

√
2, the quartic anharmonic oscillator Hamiltonian (i.e., equation (1)),

can be written (e.g., [13])

H = 1

2
+ a+a + g

4

(
a+ + a

)4
. (20)

As shown by Hsue and Chern [13], a Bogoliubov transformation

b= a − ta+√
1− t2

, (21a)

b+ = a+ − ta√
1− t2

(21b)

leads to

H =E0 +
[

4ω(1− ω)

(1+ ω)3
+ 3g

2ω2

](
b2 + (

b+
)2)

+
[

1+ ω2

2ω
+ 3g

ω2

]
b+b + g

4ω2
:
(
b + (

b+
)4)

: , (22)
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and the ground state energy is

E0 = 1

2
+ (1− ω)2

4ω
+ 3g

4ω2
. (23)

Following Hsue and Chern, the transformed variable ω = (1 − t)/(1 + t) is used; : :
represents normal ordering. Although equations (22) and (23) are valid for arbitrary ω

(and, thus, t), the variational ground state energy is obtained by minimizing E0. As
might be expected, such choice makes the quadratic term of the Hamiltonian (i.e., the
second term on the first line) vanish and the b and b+ correspond to normal modes. A so-
called generalized coherent state basis is generated by applying the raising operator to
the Bogoliubov transformed, energy minimized, ground state:

|n〉 = (b+)n√
n!

∣∣0̃〉
. (24)

The only unique nonzero matrix elements of the Hamiltonian in this basis are:

〈n|H |n〉=E0 + nω + 3g

2ω2
n(n− 1), (25a)

〈n− 2|H |n〉= g

ω2

[
n(n− 1)

]1/2
(n− 2), (25b)

〈n− 4|H |n〉= g

4ω2

[
n(n− 1)(n− 2)(n− 3)

]1/2
. (25c)

Patnaik [7] demonstrated that a RS perturbation expansion of the quartic anhar-
monic oscillator wavefunction, based on Hsue and Chern’s generalized coherent states,
gives rapid initial convergence for low-lying states. Unfortunately, such a procedure
does not circumvent the eventual divergent, or at best asymptotic, behavior. In table 1,
we show the results of a RSPT series to high order with the generalized coherent state
basis for a coupling strength (g) of 0.1. Examination of this table shows the expected
divergence, although the lowest two roots might be considered to be converged to use-
ful accuracy for the given coupling strength before the onset of increasing oscillatory
behavior. Moreover, the oscillations are such that series resummations, e.g., by Euler
transformation, produces a limit that is stable with order, even for excited states (also
see [2,6 and references therein]). Nonetheless, it is clear that the basic RSPT series
becomes increasingly dubious for higher excited states and, though not shown in this
paper, for greater coupling strength.

Table 2 shows the results of our suggested superconvergent perturbation theory for
the same coupling strength, basis functions and initial guesses as in table 1. Several com-
ments can be made. First, all roots converge absolutely, i.e., |E(n+1)| < |E(n)|. Second,
the convergence is rapid. Calculations were performed in double precision arithmetic,
with values below 1×10−14 reported as 0. Iterations were continued at least 5 orders
beyond that reported to monitor the re-emergence of nonzero values. In figure 1, the
logarithm of the energy error,

∣∣ ∑n
i=0 E

(i) − E∗
∣∣, where E∗ is the converged value, is
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Table 1
Energy corrections from RSPT for quartic anharmonic oscillator (g = 0.1) (in units of h̄ω0, where ω0 is

the angular frequency of the unperturbed oscillator).

Order E0 E1 E2 E5

0 0.560307371139 1.781504057320 3.203864631308 8.677929680119
1 0.0 0.0 0.0 0.0
2 −0.001107147000 −0.013747017005 −0.075726727366 −0.883101440006
3 0.0 0.002583575981 0.016349445468 0.234921848863
4 −0.000058125565 −0.001127018557 −0.008422419924 −0.194081357346
5 0.000009818729 0.000453794775 0.004132826855 0.124267785681
6 −0.000007347317 −0.000245193023 −0.002504594893 −0.105188876394
7 0.000002931929 0.000130452644 0.001563855633 0.086255764990
8 −0.000001773204 −0.000079916801 −0.001066538381 −0.077485405532
9 0.000000982756 0.000049954645 0.000752851673 0.070494187294

10 −0.000000623697 −0.000033636695 −0.000558632796 −0.066725485716
11 0.000000403061 0.000023373132 0.000427239050 0.064301052534
12 −0.000000277673 −0.000017004995 −0.000337941799 −0.063387074093
13 0.000000197665 0.000012761911 0.000274236138 0.063478118383
14 −0.000000146671 −0.000009900725 −0.000228269946 −0.064576000655
15 0.000000112243 0.000007893968 0.000194170806 0.066547763147
16 −0.000000088640 −0.000006462411 −0.000168605931 −0.069413168439
17 0.000000071893 0.000005416322 0.000149151482 0.073177292404
18 −0.000000059816 −0.000004640933 −0.000134266478 −0.077907999574
19 0.000000050917 0.000004057925 0.000122835405 0.083690082394
20 −0.000000044279 −0.000003616012 −0.000114098541 −0.090650034619
21 0.000000039270 0.000003279475 0.000107503971 0.098945408180
22 −0.000000035472 −0.000003023754 −0.000102662676 −0.108776844622
23 0.000000032592 0.000002831407 0.000099293658 0.120390123236
24 −0.000000030427 −0.000002690123 −0.000097199866 −0.134087032663
25 0.000000028834 0.000002591114 0.000096245592 0.150234590634
26 −0.000000027710 −0.000002528204 −0.000096344468 −0.169279377516
27 0.000000026985 0.000002497134 0.000097449819 0.191763811400
28 −0.000000026607 −0.000002495140 −0.000099549344 −0.218347387607
29 0.000000026546 0.000002520651 0.000102661600 0.249832482037
30 −0.000000026782 −0.000002573102 −0.000106834697 −0.287196798966
31 0.000000027307 0.000002652816 0.000112146396 0.331633508251
32 −0.000000028124 −0.000002760954 −0.000118705730 −0.384601382119

plotted against perturbation order for roots 0, 2, and 5. Also plotted are linear regression
curves. Taking into account that the definition of linear convergence [19] is∣∣∣∣∣

n∑
i=0

E(i) − E∗
∣∣∣∣∣= c

∣∣∣∣∣
n−1∑
i=0

E(i) − E∗
∣∣∣∣∣, (26a)

so that

ln

∣∣∣∣∣
n∑

i=0

E(i) − E∗
∣∣∣∣∣ = n ln c + k. (26b)
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Table 2
Energy corrections from superconvergent perturbation theory for quartic anharmonic oscillator (g = 0.1).

Order E0 E1 E2 E5

0 0.560307371139 1.781504057320 3.203864631308 8.677929680119
1 0.0 0.0 0.0 0.0
2 −1.117956E−03 −1.151009E−02 −6.336603E−02 −7.810828E−01
3 −4.237021E−05 −4.879391E−04 −1.869152E−03 3.440153E−03
4 −7.156280E−07 −3.378017E−06 −4.852122E−06 −5.096795E−04
5 −1.598591E−09 −9.588685E−09 −2.835430E−07 −9.756857E−06
6 −8.960316E−11 −1.343786E−09 −5.922517E−09 −3.116278E−07
7 −1.735781E−12 −3.687939E−12 −4.058620E−11 −1.298756E−08
8 −1.264809E−14 −7.600587E−13 −4.919620E−12 −2.336575E−10
9 0 0 −1.554312E−14 −1.742517E−11

10 0 −3.650413E−13
11 −2.398082E−14
12 0

Figure 1. Energy errors from superconvergent perturbation theory for states 0 (2), 2 (Q) and 5 (") of
quartic anharmonic oscillator (g = 0.1).

Figure 1 demonstrates that the suggested superconvergent perturbation theory is linear
for ground and low-lying excited states.

3.2. More highly excited states

More highly excited states can be calculated within the framework of the suggested
superconvergent perturbation theory, although naïve application can produce undesirable
results. Table 3 shows the wavefunctions of several states of the system of interest,
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Table 3
Wavefunctions of lowest roots of even symmetry of quartic anharmonic oscillator (g = 0.1) in Hsue and

Chern basis from large variational calculations.

Amplitude ψ0 ψ2 ψ4 ψ6 ψ8 ψ10 ψ12 ψ14

c0 0.99990 −0.00396 0.01363 0.00248 −0.00093 −0.00032 0.00012 −0.00005
c2 0.00226 0.99190 0.11057 0.05870 −0.01956 −0.00804 0.00336 −0.00148
c4 −0.01414 −0.12446 0.93916 0.27496 −0.14520 −0.06558 0.03152 −0.01534
c6 0.00186 −0.02166 −0.32312 0.78950 −0.41402 −0.26184 0.14771 −0.08302
c8 0.00033 0.01258 0.02431 −0.52517 −0.52368 −0.45593 0.36463 −0.25151
c10 −0.00019 −0.00190 0.02154 0.14617 0.64736 −0.18190 0.35736 −0.39155
c12 0.00003 −0.00046 −0.01037 0.00068 −0.32679 0.61604 −0.13816 −0.13697
c14 0.00001 0.00034 0.00173 −0.01947 0.08091 −0.50050 −0.41176 0.32027
c16 −0.00008 0.00048 0.00914 0.00820 0.22980 0.57407 0.10051
c18 −0.00001 −0.00042 −0.00174 −0.01782 −0.05326 −0.40450 −0.47887
c20 0.00013 −0.00044 0.00866 −0.01025 0.18037 0.51914
c22 < 0.00001 0.00049 −0.00195 0.01676 −0.04144 −0.34635
c24 −0.00002 −0.00019 −0.00034 −0.00871 −0.01011 0.15566
c26 0.00001 0.00003 0.00054 0.00234 0.01614 −0.03768
c28 0.00002 −0.00026 0.00017 −0.00914 −0.00873
c30 −0.00001 0.00006 −0.00056 0.00294 0.01574
c32 0.00001 0.00033 −0.00010 −0.00987
c34 −0.00002 −0.00011 −0.00056 0.00375
c36 0.00001 < 0.00001 0.00041 −0.00051
c38 0.00002 −0.00017 −0.00049
c40 −0.00001 0.00003 0.00048
c42 0.00001 −0.00025
c44 −0.00002 0.00007
c46 0.00001 < 0.00001
c48 −0.00002
c50 0.00001
c52 −0.00001

from a large variational calculation which may be considered to be essentially exact. In
particular, it may be noted that the first 4 even parity roots are dominated by the expected
Hsue and Chern basis function, but, in roots 5 and higher, the expected basis function
is not the dominant component. Consequently, an initial wavefunction comprising this
nondominant component may lead to unexpected results. In fact, an initial guess of the
8th basis function, i.e., (8)c

(0)
8 = 1.0, does converge quickly to the 8th state (cf. table 4),

although an initial guess of the 10th basis function converges to the 14th state. It is
interesting to note that ψ14 has the largest contribution from the 10th basis function,
c10, of nearby states. (NB: table 3 does not include ψ16 and above, but the preceding
statement applies.) So, the suggested superconvergent perturbation theory apparently
maintains integrity to initial guess.

The structure of the suggested superconvergent perturbation theory does not re-
quire an initial guess that consists of only 1 basis function. Indeed, equation (11a),
which is valid in any iteration, is specifically valid for the initial guess. Although many
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Table 4
Energies from superconvergent perturbation theory for quartic anharmonic

oscillator (g = 0.1).

Order E8 E10
a

0 15.962469719197 21.824649184287
1 15.962469719197 21.824649184287
2 12.841547050777 27.602084718042
3 13.371764919364 29.950381846269
4 13.382643382719 27.111301854539
5 13.382486728449 25.950140769719
6 13.382475187546 25.919942560541
7 13.382474827945 25.915738480272
8 13.382474808359 25.915674721312
9 13.382474807480 25.915660718837

10 13.382474807449 25.915659848379
11 13.382474807446 25.915659822746
12 13.382474807446 25.915659815104
13 25.915659815079
14 25.915659815049
15 25.915659815048
16 25.915659815048

a Generated with an initial guess of (10)c
(0)
10 = 1.0. (See text for details

concerning the nature of this excited state.)

zero-order wavefunctions are possible, a straightforward possibility uses the Bogoliubov
transformed raising operator actively; e.g.,

∣∣ψ(0)
k

〉≈ (
b+

)2∣∣ψ∗k−2

〉
, (27a)∣∣ψ(0)

k

〉≈∑
j

(k−2)c∗j
√
(j + 1)(j + 2)|j + 2〉, (27b)

where the superscript ∗ refers to converged values, and the state subscripting (and left-
superscripting for coefficient) that has been suppressed in the majority of the paper is
included here for clarity. In order to form an initial wavefunction that is reasonably
compact, the result of equation (27b) is, after normalization, truncated such that coeffi-
cients below a threshold (e.g., 0.1) are eliminated and the wavefunction renormalized.
Table 5 shows the produced zero-order wavefunctions and table 6 gives the energy cor-
rections produced by application of the suggested superconvergent perturbation series on
these zero-order wavefunctions. In consideration of the observation from the preceding
paragraph, that the Hsue and Chern basis functions are not the dominant components of
more highly excited states, the results of table 5 are not remarkable. Perhaps surpris-
ing is the extent to which these zero-order wavefunctions, which are constructed from
adjacent states, differ from single basis function wavefunctions. In particular, ψ(0)

10 and
ψ

(0)
12 have largest components one (same symmetry) function removed from the simple

choices of (10)c
(0)
10 = 1.0 and (12)c

(0)
12 = 1.0, but with substantial major contributions from
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Table 5
Initial wavefunctions of several excited states of even symmetry of
quartic anharmonic oscillator (g = 0.1) in Hsue and Chern basis using

equation (27).

Amplitude ψ10 ψ12 ψ14 ψ16

c8 −0.29460 −0.14929 0.0 0.0
c10 −0.47238 −0.32955 0.21832 −0.12862
c12 0.70720 −0.15923 0.25913 −0.24249
c14 −0.41920 0.63320 −0.11764 0.0
c16 0.11919 −0.59076 −0.40260 0.26745
c18 0.30628 0.63381 0.0
c20 −0.49766 −0.50318
c22 0.24469 0.60148
c24 −0.43863
c26 0.21392

Table 6
Energy corrections from superconvergent perturbation theory for

quartic anharmonic oscillator (g = 0.1).

Order E10 E12 E14 E16

0 16.690923775648 21.180814375770 25.193165605811 30.208996260805
1 0.0 0.0 0.0 0.0
2 6.736495E−01 3.583068E−01 6.932784E−01 2.686601E−01
3 −1.219400E−02 5.963419E−04 2.997823E−02 −1.307253E−03
4 −4.566698E−04 −2.809040E−03 −6.917797E−04 −4.741584E−03
5 −1.371290E−05 −2.336257E−05 −5.585804E−05 −2.138870E−04
6 −1.226452E−06 −1.057451E−05 −1.392378E−05 −1.544837E−05
7 −2.190026E−08 −1.972272E−07 −8.693082E−07 −2.982517E−06
8 −4.660112E−09 −2.498825E−08 −2.563340E−08 −1.505178E−08
9 −2.361844E−11 −1.639361E−09 −7.641713E−09 −1.838156E−08

10 −1.632472E−11 −3.913314E−11 −2.491163E−11 −2.317861E−10
11 −3.552714E−14 −1.167422E−11 −2.991740E−11 −5.067236E−11
12 0 −2.131628E−14 −4.902745E−13 −4.799716E−12
13 0 0 0

several basis functions. On the other hand, ψ(0)
14 and ψ

(0)
16 have largest components that

are two and three removed from the simple choices. Calculation of the overlaps of these
initial wavefunctions with the converged function gives 0.89310, 0.87396, 0.84574, and
0.87736 for ψ(0)

10 through ψ
(0)
16 , respectively. A comparison of table 6 with table 2 shows

that the rate of convergence of more highly excited states is not significantly worse than
that of low-lying excited states provided that a reasonable initial wavefunction is used.

3.3. Approximate steplength

In the preceding two subsections, it has been demonstrated that the suggested su-
perconvergent perturbation theory converges linearly for ground and excited states of



G.S. Tschumper, M.R. Hoffmann / Superconvergent perturbation theory 117

the quartic anharmonic oscillator, which is asymptotically convergent, at best, with
a Rayleigh–Schrödinger perturbation theory (RSPT) series. As part of the suggested
method, a one-dimensional line search is performed (cf. equations (14)–(17) and ac-
companying text). And, although this line search is not particularly difficult compu-
tationally, the requirement of generating the Hamiltonian projection of the step vector,
i.e., κ (n) (cf. equation (19)), requires that a larger part of the full Hilbert space be consid-
ered for this final step than for the generation of the step vector itself. For problems in
which this projection is of small incremental dimensionality, such as the quartic anhar-
monic oscillator under current consideration (i.e., the increment is exactly 2), this issue
is computationally unimportant, although it is sure to be significanct for other problems.
Based on this consideration, and the known enhanced convergence of the Gauss–Newton
method for small residual simultaneous equation problems (see, e.g., [19]), we investi-
gated whether an approximate updating scheme suffices.

At the simplest approximation, one could accept the step without any line search;
in other words, use equation (13). Table 7 presents energy corrections for several states
using this scheme. Comparison of table 7 with table 2, for states 0, 1, 2, and 5, and,
less directly, with table 4, for states 8 and 10, shows that the simple scheme does not
compromise convergence. It is worth noting that series starting from Hsue and Chern
basis function 10 converge to different final states using the line-search and non-line-
search methods: the line search method converges to the final state with greatest overlap
(i.e., state 14), but the non-line-search method converges to an inexplicable final state
(i.e., state 12). As was the case for the line search variant, initial wavefunctions produced
by application of raising operator on the next lower state of same parity, as described in
the preceding subsection, produced rapidly convergent series to the correct final states.
Since the convergence for the non-line-search variant is generally similar to those given
in table 6, this data is not reproduced here. So, at least for the quartic anharmonic
oscillator, one should conclude that the line search for step length may be skipped.

4. Conclusion

A superconvergent perturbation theory for the bound states Hamiltonian eigen-
values and eigenvectors of a one-dimensional quantum system was suggested. The
approach is based on redefining the partitioning with iteration and thus follows Kol-
mogorov. Implementation is in the framework of Berry’s insight that the approach of
Kolmogorov can be realized in terms of local quadratic approximations. The proposed
theory has similarity to the Gauss–Newton method for the solution of simultaneous non-
linear equations. In particular through the work presented here, a computationally facile
superconvergent perturbation theory has been realized.

We demonstrated the effectiveness of the suggested superconvergent perturbation
theory on the quantum quartic anharmonic oscillator. It is well known, and easily
shown numerically, that a Rayleigh–Schrödinger perturbation theory is divergent, but
summable, even for relatively small coupling strength. Our results using the suggested
theory converge absolutely for ground and excited states.



118 G.S. Tschumper, M.R. Hoffmann / Superconvergent perturbation theory

Ta
bl

e
7

E
ne

rg
y

co
rr

ec
tio

ns
fr

om
su

pe
rc

on
ve

rg
en

t
pe

rt
ur

ba
tio

n
th

eo
ry

,w
ith

ou
tl

in
e

se
ar

ch
,f

or
qu

ar
tic

an
ha

rm
on

ic
os

ci
lla

to
r

(g
=

0.
1)

.
O

rd
er

E
0

E
1

E
2

E
5

E
8

E
10

a

0
0.

56
03

07
37

11
3

1.
78

15
04

05
73

2
3.

20
38

64
63

13
0

8.
67

79
29

68
01

1
15

.9
62

46
97

19
1

21
.8

24
64

91
84

2
1

0.
0

0.
0

0.
0

0.
0

0.
0

0.
0

2
−1

.1
21

97
0E
−0

3
−1

.1
57

94
1E
−0

2
−6

.3
53

81
3E
−0

2
−7

.3
32

94
5E
−0

1
−8

.8
58

73
1E
−0

1
5.

62
93

51
E
−0

1
3

−3
.8

39
43

1E
−0

5
−4

.1
86

57
6E
−0

4
−1

.6
97

04
7E
−0

3
−4

.4
31

90
7E
−0

2
−1

.3
05

78
3E
+0

0
−3

.8
61

49
2E
−0

1
4

−6
.7

74
73

4E
−0

7
−3

.3
30

22
0E
−0

6
−4

.9
11

49
5E
−0

6
−5

.3
90

11
8E
−0

4
−3

.8
40

05
2E
−0

1
−4

.5
57

89
3E
−0

1
5

−1
.6

14
73

8E
−0

9
−9

.3
47

72
0E
−0

9
−2

.2
43

68
9E
−0

7
−9

.6
02

90
8E
−0

6
−4

.3
22

01
1E
−0

3
−5

.8
08

79
1E
−0

3
6

−7
.3

49
16

3E
−1

1
−1

.2
46

93
1E
−0

9
−5

.6
69

46
9E
−0

9
−2

.6
40

83
8E
−0

7
−1

.1
35

14
8E
−0

5
−2

.9
33

00
1E
−0

3
7

−1
.7

00
62

0E
−1

2
−3

.8
93

55
2E
−1

2
−3

.8
47

81
1E
−1

1
−1

.2
50

89
7E
−0

8
−3

.0
33

48
3E
−0

7
−1

.9
85

90
3E
−0

5
8

−1
.2

01
57

8E
−1

4
−5

.5
42

23
3E
−1

3
−4

.6
58

05
2E
−1

2
−2

.1
34

30
2E
−1

0
−1

.9
16

96
9E
−0

8
−9

.7
26

04
7E
−0

6
9

0
0

−1
.5

54
31

2E
−1

4
−1

.6
88

25
0E
−1

1
−7

.2
00

69
3E
−1

0
−1

.7
16

96
2E
−0

7
10

0
−3

.2
32

96
9E
−1

3
−3

.1
35

98
0E
−1

1
−2

.4
38

21
7E
−0

8
11

−2
.6

64
53

5E
−1

4
−2

.2
55

97
3E
−1

2
−1

.2
74

93
0E
−0

9
12

0
−4

.6
18

52
8E
−1

4
−4

.2
63

96
7E
−1

1
13

0
−7

.5
13

98
9E
−1

2
14

−3
.9

07
98

5E
−1

4
15

−3
.5

52
71

4E
−1

4
16

0
a

G
en

er
at

ed
w

it
h

an
in

it
ia

lg
ue

ss
of

(1
0)
c
(0
)

10
=

1.
0.

(S
ee

te
xt

fo
r

de
ta

il
s

co
nc

er
ni

ng
th

e
na

tu
re

of
th

is
ex

ci
te

d
st

at
e.

)



G.S. Tschumper, M.R. Hoffmann / Superconvergent perturbation theory 119

It was shown that, in accord with Patnaik’s work using RSPT, the Hsue and Chern
generalized coherent state basis functions are excellent initial wavefunctions for ground
and low-lying excited states. For more highly excited states, it was shown by numerical
example that the line search variant of the suggested superconvergent perturbation theory
converges to an excited state with largest overlap with the zero-order function, but that
the approximate non-line-search variant does not. Consequently, we conclude that the
generalized coherent state basis will not be the most desirable initial zero-order functions
for studies of highly excited states. However, we showed that initial states generated
from lower states, by straightforward application of raising operators, are reliable initial
wavefunctions for all states examined. Furthermore, for such zero-order wavefunctions,
the line search and non-line-search variants had very similar convergence characteristics.
With reasonable initial wavefunctions, the rate of convergence was shown to be linear
for ground and excited states.

We expect to consider other quantum mechanical bound state systems using the
suggested superconvergent perturbation theory.
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